

Ready Player AI
Integration of Artificial Neural Networks in Multiplayer Games.

Leon Rossi W21d

17.12.2024

Matura Thesis

Kantonsschule Enge, Zürich

Patrik Marxer

1

Table of Contents
1 Introduction .. 5

1.1 Preface .. 5

1.2 Personal motivation ... 5

1.3 Objective and Mission Statement ... 6

1.4 Executive Summary ... 7

2 Technical Background: Functionality of Artificial Neural Networks 8

2.1 ... 9

2.2 Architecture of an Artificial Neural Network ...10

2.2.1 Perceptrons ...10

2.2.2 Activation functions: ..10

2.2.3 Layers ...12

2.2.4 My Implementation of a basic neural Network.......................................14

2.3 Training of Artificial Neural Networks ...16

2.3.1 Genetic Algorithms ..16

2.3.2 Gradient Descent ..17

2.3.3 How I derive the partial Derivatives ...23

2.3.4 Reinforcement Learning and Actor-Critic Method24

3 Implementation of ANNs into Pong and Footsies ...31

3.1 Background on Programming ..31

3.2 Game Logic and ANN Implementation Objectives ..32

3.2.1 Pong ..32

3.2.2 Footsies ..33

3.3 Approach 1: Genetic Algorithm ..34

3.3.1 Pong ..34

3.3.2 Footsies ..35

3.4 Approach 2: Reinforcement learning ..37

3.4.1 Pong ..37

3.4.2 Footsies ..38

3.5 Comparison of the Approaches ...39

4 Exploring parameters ..43

4.1 Method ...43

2

4.2 Parameters ...44

4.3 Hypotheses ..44

4.3.1 Size of the ANNs ..44

4.3.2 Learning Rate in Reinforcement Learning ..44

4.4 Results ...45

4.4.1 Baseline ..45

4.4.2 Size of ANNs ..48

4.4.3 Learning Rate in Reinforcement Learning ..52

5 Conclusion ..56

6 Acknowledgements ..58

7 Declaration of Authenticity ...58

8 Reflection ..59

9 Bibliography ...60

10 Appendix..63

10.1 Appendix A ...63

10.2 Appendix B ...63

10.3 Appendix C ...63

10.4 Appendix D ...63

10.5 Appendix E ...64

10.6 Appendix F ...64

10.7 Appendix G ...64

3

Table of Figures
Title page figure: HiFight. “FOOTSIES - HiFight,” 2018. https://hifight.github.io/footsies/.

Figure 1: Model of a perceptron, which takes X1 to Xn and b as inputs and returns Z. ..10
Figure 2: Mathematical definition of a step function with zero as the threshold. 11
Figure 3: Graph of the Sigmoid function. ..11
Figure 4: Graph of the Rectified linear function. ...12
Figure 5: Architecture of an ANN. Each node represents a perceptron, and each edge
represents a connection between two perceptrons with an assigned weight. The input
layer is coloured blue, the hidden layers are coloured black, and the output layer is
coloured green. ..13
Figure 6: Simplified version of RunNN function. ..15
Figure 7: Mathematical definition of the mean squared error function. 17
Figure 8: A graph showing how a weight is shifted down the gradient. 18
Figure 9: Model of a neuron with the weights W1, W2, W3, the inputs X1, X2 X3 and the
output y. The bias is not in the graphic but would be added. 20
Figure 10: Model of a neuron with the weights W1, W2, W3, the inputs X1, X2 X3 and the
output y. The bias is not in the graphic but would be added. 23
Figure 11: The agent-environment interaction in a Markov decision process. 25
Figure 12: A state-action value function with four states and four actions, Right, Left, Up
and Down. For each state except state 3, the action with the highest expected total
reward is marked green. In state 3 a random action is selected to ensure exploration. .26
Figure 13: Graph describing the relationship between the policy function as the actor, the
value function as the critic and the environment. ...29
Figure 14: Pseudocode for the Actor-Critic Method. δ is the advantage, R is the reward,
∇lnπ(A|S,∅) = ∇π(A|S,∅)/ π(A|S,∅). ...30
Figure 15: Screenshot of Pong. The white rectangles on the side are the paddles
controlled by the player and the white square close to the middle is the ball. 32
Figure 16: Screenshot of Footsies. In the top corners the shields represent how often you
can block. The rectangles at the bottom indicate the current score in a best of five. 33
Figure 17: Performance of the reinforcement learning algorithm with the following
parameters: ..39
Figure 18: Performance of the Genetic Algorithm in relation to the generation. Here the
Genetic Algorithm had a population size of 200, 10 lives and a mutation threshold of 0.1.
 ..41
Figure 19: Performance of multiple learning attempts with the same parameters.45
Figure 20: Two ways the algorithm can get stuck and stop converging. A learns at the start
and then suddenly falls back to 0.25, B never improves. Both use the parameters
described in Table 1. ...47
Figure 21: Three learning attempts that start with the same set of weights instead of each
one starting with a unique set of randomly generated weights. This shows the effect

4

variables other than initialization have on the training. Parameters as specified in Table 1.
 ..48
Figure 22: Average performance of multiple learning attempts with the same-sized ANNs.
The name of each data set is x,y. X is the number of hidden layers and y is the number of
neurons in each hidden layer, the rest of the parameters are the same as before. Only
successful learning attempts are represented, unsuccessful attempts were discarded.
 ..49
Figure 23: The number of episodes [in thousands] it took each size in Figure 22 to reach
0.99 accuracy versus the total number of neurons in all hidden layers.50
Figure 24: The chance of success for each size in Figure 22 versus the total number of
neurons in the hidden layers. ...52
Figure 25: Performance of learning attempts with different learning rates for the actor and
the critic. The name of each data set is “x, x is the learning rate of the critic. The learning
rate of the actor is smaller by a factor of ten, so x/10. ...53
Figure 26: Zoomed in version of Figure 25 for readability. ..54
Figure 27: The number of episodes [in thousands] it took each learning attempt in Figure
25 to reach 0.99 accuracy versus learning rate. 0.0001 was left out because it made the
graph unreadable. ...54

Table of Tables
Table 1: The parameters used for all the learning attempts in Figure 19.45
Table 2: Analysis of points where the policy reaches an accuracy of 0.99. Same data set
as Figure 19. ...46
Table 3: Kendall’s correlations between the total number of neurons and the number of
episodes [in thousands] needed to reach 0.99 accuracy and between the total number of
neurons and the chance of success. ..50
Table 4: The parameters used for all the learning attempts in Figure 25.53

5

1 Introduction

1.1 Preface

In recent years, artificial intelligence has taken the world by storm. Products like Chat
GPT and Dall-E have changed how people work, and many believe that artificial
intelligence is the next big innovation since the industrial revolution. But the field of
artificial intelligence and machine learning has been around for a lot longer than eye-
catching applications like large language models.

While many projects have practical applications, other projects are purely for research
and need environments to serve as testing grounds. It is oftentimes not feasible to build
real-life test environments, so simulations are used to substitute them. Oftentimes video
games have been used as playgrounds for testing machine learning research since they
do not require specific hardware and changes to the algorithm and the environment can
be made on the fly.

The first games used in machine learning were classical board games like chess and go,
but the variety of available video games offers a wide range of challenges that are also
found in the real world. These video games can be used to solve problems before building
expensive hardware to develop experimental software in the real world.

1.2 Personal motivation

My interest in computer science started with playing video games. From playing on
Nintendo consoles, I switched to Windows, where I became interested in not only playing
video games but also creating them. Using Unity, I started experimenting with basic
character movement, combat, and pathfinding. While none of my projects were ever
even close to being finished, I enjoyed mainly the programming aspect of the process.

When I went on a high school exchange year, I used this chance to attend a computer
science course offered by my school in Wales (UK) and learned the proper basics I missed
due to me following random tutorials and solving problems based on Google and
Stackoverflow. While game design did not end up sticking, my interest in computer
science and programming did. Due to this, I chose to do a programming project as my
“Maturitätsarbeit”.

My first contact with machine learning was also through video games. In StarCraft II, a
highly complex game I was playing at the time, AlphaStar by Google DeepMind was
beating some of the best players internationally. This really impressed me, as it was able
to master a game I was struggling with immensely. Algorithms that can perform such
complicated tasks still fascinate me today.

6

1.3 Objective and Mission Statement
My goal for this project was to understand, and to a certain extent recreate, how it is
possible to for an algorithm to achieve such a high level of proficiency in such a complex
task.

For this I developed the code for an artificial neural network that has the capability to
learn games, i.e. the respective game logic, and is able to prevail in playing these games
against human capabilities. Developing AI algorithms that can teach themselves to
efficiently master standard market games (such as StarCraft II, Dota II and others) is
highly complex and requires substantial time and technical resources. Moreover, these
games have been developed for commercial purposes and neither their code nor the
respective API’s are available to the public in a way that AI integration would be possible.
Out of these reasons, I decided to use open-source games with simple game mechanics
for the purpose of this work. Thereby, my choice fell on two games that are simpler and
open-source:

• Pong: A well-known 2D imitation of table tennis, where the goal is to hit a ball past
your opponent. It’s a very simple game that involves minimal engagement with an
opponent and a very small number of possible actions.1

• Footsies: an open-source fighting game that tries to simplify the concept of
games like Street Fighter down to a minimum. This makes it a lot easier to learn
than a AAA fighting game with dozens of characters and hundreds of possible
moves. Footsies poses a lot more challenges compared to Pong since it requires
active engagement with the opponent and is, in general, way more complex.2

From a technical perspective, I worked with two different learning algorithms to compare
the result of their application to the games mentioned above, a Genetic Algorithm and
the Actor-Critic Method:

• Genetic Algorithm: A quite simple method that relies on randomness and
evolution based on Charles Darwin’s theories to find a solution to a given task. 3

• Actor-Critic Method: A deep reinforcement learning algorithm which uses a
combination of two Artificial Neural Networks, rewards and backpropagation to
solve a given task. I expected the Actor-Critic Method to outperform the Genetic
Algorithm since it is quite a lot more advanced and complicated.4

1 See section 3.2.1
2 See section 3.2.2
3 See section 2.2.1
4 See section 2.2.4

7

1.4 Executive Summary
Result of applied Algorithms: In summary, the evaluation of the performance of the
applied algorithms provided the following results:

• Genetic Algorithm: The Genetic Algorithm provided good results for both Pong
and Footsies. Especially for Pong the performance was better than what I
expected. It achieved near perfect accuracy and rivalled the performance of the
Actor-Critic Method. However, the Genetic Algorithm demonstrated an advantage in

handling steep ball angles due to its lack of reliance on action probabilities. For Footsies,
the algorithm achieved moderate success, learning basic strategies but struggling

with the evolving nature of self-play. The performance was therefore far from optimal,
and it had problems learning anything complex and reacting to the enemy.

• Actor-Critic Algorithm: The Actor-Critic Method worked well for Pong, especially
after the optimization of the parameters it was able to learn fast and achieve high
accuracy quite consistently. The implementation for Footsies had more problems,
the self-play mechanism it had originally used did not work as hoped.
Modifications and training against a pre-programmed bot resulted in
improvements, but it maintained to have problems with consistency and was only
able to achieve a limited level of performance.

Assessment of parameter impact:

• Size of ANNs: My tests in Section 4 prove that my assumptions about how the
size of the artificial neural networks affects the learning process were wrong.
Contrary to my initial assumption, it is possible to solve Pong with artificial neural
networks of minimal complexity, and as the complexity of the artificial neural
networks increases, the algorithm can learn faster.

• Learning Rate of ANN: I discovered that the learning rate, controlling the
magnitude of updates during training, has a significant impact on the learning
process of the ANN. Optimal learning rates were identified for the Actor-Critic
Algorithm in Pong, demonstrating the sensitivity of performance to this parameter.

Overall Assessment: As part of my work, I successfully developed AI systems capable
of mastering Pong, demonstrating that it is possible to apply Artificial Neural Networks of
minimal complexity to such a use case and still achieve almost 100% accuracy. While
the algorithms for Footsies showed promise, further research and optimisation would be
required to achieve human-level performance.

8

2 Technical Background: Functionality of Artificial
Neural Networks

At the core of all the learning algorithms I used in this paper are feed-forward artificial
neural networks. I will refer to them as “Artificial Neural Networks”, or for short, “ANNs”.

“Deep feedforward networks, also called feedforward neural networks,
or multilayer perceptron networks (MLPs), are the quintessential deep
learning models. The goal of a feedforward network is to approximate

some function f∗. For example, for a classifier, y = f ∗ (x) maps an input
x to a category y . A feedforward network defines a mapping y = f (x ; θ)
and learns the value of the parameters θ that result in the best function

approximation.”5

In the following chapter, I will explain how these artificial neural networks work and how
they can be used to complete complex tasks.

The first deep MLPs, like what I am using, were developed in 1965 by researchers in the
USSR and were based on ideas that can be dated back to 1795, where Johann Carl
Friedrich Gauss developed the first linear neural networks. 6

Artificial neural networks are based on the inner workings of a human brain. The brain
consists of many connected neurons, these neurons communicate using electrical
signals and can interpret signals and control the body. Artificial neural networks aim
mimic these functions to complete complex tasks.7Thereby, in essence, ANNs compute
complex data relationships and patters by transforming the weighted sum of multiple
input data via interconnected nodes, so called neurons (perceptron), through multiple
layers in a non-linear manner (using a so-called activation function) to relevant output
data. While the key elements of ANNs are further explained below, here an initial overview

on how ANNs essentially operate:

5 Goodfellow, Bengio, and Courville, Deep Learning.
6 Schmidhuber, “Annotated History of Modern AI and Deep Learning.”
7 Walczak and Cerpa, “Artificial Neural Networks.”

9

• Input: The ANN receives input data, which can be anything from sensor
readings to pixel values in an image.

• Weighted Summation: Each perceptron8 in a layer receives inputs from the
previous layer. Each input is multiplied by a weight associated with that
connection. These weighted inputs are then summed up.

• Activation Function: This weighted sum is then passed through an activation

function9. The activation function introduces non-linearity, enabling the
network to model complex, non-linear relationships in the data, a crucial
capability for more complex tasks. The output of the activation function
becomes the output of the perceptron.

• Output: This process is repeated layer by layer, with the outputs of one layer

becoming the inputs for the next, until the final layer produces the output of
the entire ANN. This output can represent a decision, a prediction, or an
action, depending on the task that the ANN has been assigned with.

Initially, the weights and biases of the ANN are randomly assigned and the outcome of
the ANN model therefore unreliable. To make meaningful predictions or decisions, the
ANN needs to be trained. This involves adjusting the weights and biases based on the
performance of the network on a given task. The goal is to find the optimal set of weights
and biases that minimize errors and maximize the network's ability to perform the desired
task (see section x below).

2.1

8 See section 2.1.1
9 See section 2.1.2

10

2.2 Architecture of an Artificial Neural Network

2.2.1 Perceptrons

At the heart of the human brain are the neurons. Artificial Neural Networks consist of
perceptrons, also called neurons, which simulate the functions of a human neuron.

Figure 1: Model of a perceptron, which takes X1 to Xn and b as inputs and returns Z. 10

A perceptron turns multiple inputs into a single output. Each input is usually connected
to either the output of another perceptron or to an input into the neural network like a
sensor reading or the colour value of a pixel. Each input gets weighted, which means it is
multiplied with a weight determined by the perceptron. All the weighted inputs and a bias
are added together and get run through an activation function which then returns Z.11

2.2.2 Activation functions:

ANNs without activation functions are just a collection of linear functions and as a result
will stay linear no matter what the weights and biases are; this makes them unable to
complete anything other than simple tasks. The purpose of the activation function is to
introduce non-linearity. This enables the ANN to approximate complex functions as
required for complex tasks.12

The most basic activation function is the step-function. It converts a single real number
into a one if it is above a certain threshold. Else it returns a zero.13

10 Kinsley and Kukieła, “Neural Networks from Scratch in Python.”, 13.
11 Kinsley and Kukieła.
12 Brownlee, “How to Choose an Activation Function for Deep Learning - MachineLearningMastery.Com.”
13 Codecademy, “Binary Step Activation Function | Codecademy.”

11

Figure 2: Mathematical definition of a step function with zero as the threshold. 14

Step functions are barely used anymore as they are unable to represent data, and newer
activation functions like the sigmoid function allow for more accuracy.

The sigmoid function maps all real numbers into a range between zero and one. This
allows it to represent more numbers with more accuracy and has been widely used in
neural networks over the past few years. The most common sigmoid function is the
logistics function as below, but other versions exist.15

Figure 3: Graph of the Sigmoid function. 16

The main issue with sigmoid functions is the vanishing gradient problem. As one can see
in the graph, the curve flattens out with large positive or negative values. This means the
derivative of a sigmoid function is bell-shaped, and the derivatives of large positive or
large negative values are close to zero. Over multiple layers, this can lead to very small
changes in weights and slow down the learning considerably.17

14 Codecademy.
15 Wood, “Sigmoid Function Definition | DeepAI.”
16 YanisaHS, “Sigmoid Activation Function | Codecademy.”
17 DeepAI, “Vanishing Gradient Problem Definition | DeepAI.”

12

The rectified linear function (ReLu) solves this problem. It returns zero if the input is
smaller than zero, and if not, it returns the input. This means that the derivative is either
one or zero.

Figure 4: Graph of the Rectified linear function. 18

It is also faster to compute and easier to derive. Due to it being mostly linear and being
able to output a true zero, which is desirable, it is easier to train and leads to faster
training. ReLu’s main disadvantage is that it is unable to return negative values, but for
most applications, its benefits outweigh the loss of negative values.19

2.2.3 Layers

Every perceptron consists of a bias, weights, and an activation function. A layer consists
of multiple perceptrons. In a fully connected network, like the one I am using, the inputs
of each perceptron in layer n are connected to all the outputs in layer n-1. Similarly, the
output of each perceptron in layer n is connected to the inputs of all the perceptrons in
layer n+1.

18 Patel, “Understanding the Rectified Linear Unit (ReLU): A Key Activation Function in Neural Networks |
Medium.”
19 Brownlee, “A Gentle Introduction to the Rectified Linear Unit (ReLU) - MachineLearningMastery.Com.”

13

Figure 5: Architecture of an ANN. Each node represents a perceptron, and each edge represents a connection
between two perceptrons with an assigned weight. The input layer is coloured blue, the hidden layers are coloured

black, and the output layer is coloured green. 20

In this graph, each node represents a perceptron, and each edge represents a connection
between two perceptrons with an assigned weight. The input layer is coloured blue, the
hidden layers are coloured black, and the output layer is coloured green. The ANN
consists of four inputs, two hidden layers with six neurons each, and two outputs.21

As you can see in the graph, there are three types of layers: the input layer, the hidden
layers and the output layer:

• Input Layer: The purpose of the input layer is, as the name suggests, to handle the
inputs. Its function is to pass on the value of each of the inputs, which could be
the reading of a sensor or the positional data of an object, to the perceptrons of
the first hidden layer. It does not have biases or an activation function and instead
passes on the data it receives. It serves as an intermediary between the outside
and the ANN.

• Hidden Layer: Hidden layers are usually the biggest part of the ANNs and are
responsible for most of the computation in the neural network. They process the
inputs according to their weights, biases, and activation functions, and tuning
their parameters is how they are improved. The size of a neural network is
determined by the number of hidden layers and the amount of perceptrons in
each layer.

20 Jander, “Programming a Mediocre Neural Network From Scratch.”
21 Jander.

14

• Output Layer: The output layer is the last layer and produces outputs that are
usable as a solution to the given task. The number of outputs is determined by the
task. The output layer oftentimes does not use the same activation function as the
hidden layers but instead either a function like SoftMax, which normalises the
values so that they add to one, or outputs the raw data. The SoftMax function is
most often used to create a probability distribution for classification tasks.
Classification tasks label input data with a class label. An example would be
labelling as “spam” or “not spam”. The postprocessing the output layer does is
needed to ensure that the outputs of the ANN are usable.22

2.2.4 My Implementation of a basic neural Network

The artificial neural network lies at the heart of all the algorithms I use for my project, and
I had to make sure that my implementation is efficient enough to be used and trained at
an at least acceptable pace. The way my implementation works is by using a four-
dimensional list. That is a list of lists of lists of lists of lists. The first list contains all the
data needed to form the complete artificial neural network and consists of lists that each
represent a different layer.

All layers, except for the last one, contain the same number of lists, each list representing
a different neuron. In each neuron there is one list that contains all the weights between
the input of this neuron and the output of all the neurons in the layer before, and another
list that contains the bias and some information used by the training algorithm.

In this construct, the input layer does not have its own list. As it does not have an
activation function or weights, this is not necessary. Instead, the number of weights in
the first hidden layer corresponds to the number of inputs, so that they can be directly
passed into the weights of the first hidden layer.

22 GeeksForGeeks, “Layers in Artificial Neural Networks (ANN) - GeeksforGeeks”; Brownlee, “4 Types of
Classification Tasks in Machine Learning - MachineLearningMastery.Com”; Kinsley and Kukieła, “Neural
Networks from Scratch in Python.”, 13-14.

15

Figure 6: Simplified version of RunNN function.

The code in Figure 6 is responsible for calculating the output of a ANN based on a list of
inputs. The function takes in two arguments, the ANN (nN), the list with all the weights
and biases, and a list of inputs. It outputs one list with all the outputs. The inputs, weights,
biases and outputs are all floating-point numbers.

Line 13-14 calculate the output of a single neuron. The Zip function in Line 13 multiplies
each input from the currentInput list with the corresponding weight in node[1] and adds
the bias in node[0][0]. In Line 14 this value is passed through the Rectified Linear
function, ReLu(), and added to the end of the list that holds the inputs for the next layer.

This is repeated for every neuron in the layer, afterwards the currentInput list copies what
is in the nextInput list and the nextInput list is cleared. This way the currentInput list
contains the outputs of the last layer and can give the to this layer. After the last layer, the
nextInput list contains the outputs of this last layer and is returned as the output of the
function.

16

2.3 Training of Artificial Neural Networks
When creating an artificial neural network all the weights and biases are initialised
randomly or semi-randomly. At the start the outputs are also random and complete
nonsense. For them to become meaningful the ANN must first be trained by tuning the
parameters. This means we try to find values for all the weights and biases which lead to
the outputs representing viable solutions to our task, based on the inputs.23

As part of this work, the following training algorithms have been applied:

• Genetic Algorithm: One of the simplest training algorithms for neural networks
and other machine learning algorithms (see below section 2.2.1).

• Actor-Critic Method; A particular type of reinforcement learning, which uses the
backpropagation from the Gradient Descent algorithm (see below section 2.2.2).

2.3.1 Genetic Algorithms

Genetic Algorithms are among the simplest training algorithms for neural networks and
other machine learning algorithms. They are based on natural selection as proposed by
Charles Darwin and try to imitate the way genes are inherited and mutated in nature and
use this to optimize algorithms.24

Genetic Algorithms start by initializing multiple individuals, in this case ANNs with
different weights and biases. Each unique combination of weights and biases is called a
chromosome. Each variable in these chromosomes, here each weight and each bias, is
a gene. The goal of the Genetic Algorithm is to find the optimal value for each gene to
combine them into a chromosome which can perfectly solve a given task. The collection
of individuals forms a population. 25

Each individual is assigned a fitness value. The purpose of this fitness value is to describe
the chromosome’s ability to solve the given task. The fitness value is determined by
testing all the chromosomes, and the better they perform, the fitter they are and the larger
their assigned fitness value is.

Then the next generation, another population, is created based on the achieved fitness
values. There are a lot of ways to do the reproduction, but usually, for each individual in
the new population, two “parents” are semi-randomly selected, with the ones with a
higher fitness value having better chances at being selected. The new chromosome is

23 Kinsley and Kukieła, “Neural Networks from Scratch in Python”,131f; Walczak and Cerpa, “Artificial
Neural Networks.”
24 AnalytixLabs, “A Complete Guide to Genetic Algorithm — Advantages, Limitations & More | Medium”;
Tattersall, “Charles Darwin and Human Evolution.”
25 AnalytixLabs, “A Complete Guide to Genetic Algorithm — Advantages, Limitations & More | Medium.”

17

then a mixture between the genomes of the two parents with a chance of mutation, a
random change of a gene.

This way, the best-performing individuals get preserved and mixed with the hope of
creating individuals that perform the same or better. This leads to a steady improvement
with each generation until either the limit or a dead end is reached.26

2.3.2 Gradient Descent

Gradient Descent is one of the most used training algorithms and uses pre-classified
data to train. Each data set consists of a set of inputs and a correct solution. Gradient
Descent is an analytical approach to training a neural network.

I used a different algorithm since I do not have pre-classified data. The Actor-Critic
Method uses gradient ascent, which is very close to Gradient Descent, so many of these
concepts still apply and it is easier to understand the mathematical concepts behind
backpropagation based on Gradient Descent then the Actor-Critic Method.27

In Gradient Descent, a loss function is used to determine how well a given set of weights
and biases solves a problem.

Figure 7: Mathematical definition of the mean squared error function. 28

This is done by comparing the output vector of the neural network and the “perfect”
answer, which is given by the pre-classified dataset. The mean squared error function
returns the mean error, the smaller the error, the better the ANN is performing.

The goal is to reduce the loss, this is already quite a lot more specific than just improving
the parameters. Using differentiation, we can calculate the partial derivative of each
weight and bias with respect the loss for each set of inputs.

26 GeeksForGeeks, “Layers in Artificial Neural Networks (ANN) - GeeksforGeeks”; Katoch, Chauhan, and
Kumar, “A Review on Genetic Algorithm: Past, Present, and Future.”
27 Sutton and Barto, Reinforcement Learning : An Introduction, 331f; Kinsley and Kukieła, “Neural Networks
from Scratch in Python.”,139.
28 Nielsen, “Using Neural Nets to Recognize Handwritte Digits | NeuralNetsAndDeepLearning.”

18

For each data set, we first propagate forward, this means we let the ANN run on a set of
inputs. Using the solution from the data set, we then calculate the loss and all the partial
derivatives for this set of inputs.

Figure 8: A graph showing how a weight is shifted down the gradient. 29

The partial derivatives describe how each weight and bias affects the loss, when each
weight and bias is shifted a bit against its gradient, the loss should be a bit smaller than
before. This can be repeat this again and again, thousands of times, until the loss is as
small as possible.30

There are some problems with this: one of the biggest being local optima. It can happen
that no matter what direction the weight is shifted, the weight loss will be worse than
before, even though the best solution has not been reached yet. If this happens, the
algorithm will be stuck and unable to move forward.31

2.3.2.1 Calculating the Partial Derivatives
The hard part with Gradient Descent and a lot of other training algorithms is calculating
the partial derivatives. Backpropagation uses the chain rule to calculate all the partial
derivatives starting in the last layer and working backwards to the first.32

29 Kim, “PyTorch Lecture 03: Gradient Descent - YouTube.”
30 Nielsen, “Using Neural Nets to Recognize Handwritte Digits | NeuralNetsAndDeepLearning”; IBM, “What
Is Gradient Descent? | IBM.”
31 Mishra, “The Curse of Local Minima: How to Escape and Find the Global Minimum | by Mohit Mishra |
Medium.”
32 Kinsley and Kukieła, “Neural Networks from Scratch in Python.”, 180.

19

2.3.2.2 The Partial Derivative
Partial derivatives are used to calculate derivatives in functions with multiple variables.
This is done by treating every other variable as constant.

f(x) = x2

f’(x) = 2x

Derivative of f(x) = x2 using the power rule.

f(x, y) = x2 + y3

f’(x) = 2x + 0 = 2x

Solving for the partial derivative of f(x, y) = x2 + y3 with respect to x in a function with
multiple variables by treating y as a constant.

f’y = 0 + 3y2 = 3y2

Solving for the partial derivative of f(x, y) = x2 + y3 with respect to y in the same way by
treating x as a constant.

This only works as long as the other variables remain constant. When both variables are
changed, the graph of a function f(x, y) does not follow the partial derivative of f(x, y) with
respect to x or y.33

The partial derivative for a function f(x, y) with respect to x is written as:34

𝑑𝑓

𝑑𝑥

2.3.2.3 The Chain Rule
“A special rule, the chain rule, exists for differentiating a function of another function.”35

The chain rule is used to differentiate nested functions with the form f(g(x)) if f(x) and g(x)
are both differentiable.

F(x) = f(g(x))

F′(x) = f′(g(x)) g′(x)

33 MathIsFun, “Partial Derivatives.”
34 NCL, “Numeracy, Maths and Statistics - Academic Skills Kit.”
35 “The Chain Rule.”

20

The derivative for F(x) = f(g(x)) with g(x) being the inner function and f(x) being the outer
function.

Using the proper notation for partial derivatives, this could be written as:36

F’(x) = 𝑑𝑓

𝑑𝑔
 * 𝑑𝑔

𝑑𝑥

2.3.2.4 Backpropagation using the chain law
Using the chain law, we can calculate the partial derivative of each variable to get an idea
of how it impacts the output. We will look at a simplified version of an artificial neural
network and calculate the partial derivatives of all the weights, input, and bias.

Figure 9: Model of a neuron with the weights W1, W2, W3, the inputs X1, X2 X3 and the output y. The bias is not in the
graphic but would be added. 37

The values for all the variables are:

X1 = 1 W1 = 6

X2 = 2 W2 = 5

X3 = 3 W3 = -4

Bias = 1

And the activation function used is the Rectified Linear function.

36 Dawkins, “Calculus I - Chain Rule.”
37 Minsky and Papert, “Minsky-and-Papert-Perceptrons.”

21

Doing the forward pass the result would be:

Y = ReLu(X1 * W1 + X2 * W2 + X3 * W3 + Bias)

= 1 * 6 + 2 * 5 + 3 * -4

= 6 + 10 – 12 = 4

ReLu(4) = 4

We first calculate the gradient of the neuron. For now, we assume the gradient is one.
Here the function is written differently to make calculating the partial derivatives easier.

𝜕

𝜕𝑤0
 ReLu(Sum(Mul(X1, W1), Mul(X2, W2), Mul(X3, W3), Bias)

 = 𝑑𝑅𝑒𝐿𝑢()

𝑑𝑆𝑢𝑚()
 * 𝑑𝑆𝑢𝑚()

𝑑𝑀𝑢𝑙(𝑋0,𝑊0)
 * 𝑑𝑀𝑢𝑙(𝑋0,𝑊0)

𝑑𝑊0

Using chain rule the equation can be separated into small parts which can be derived
separately and multiplied together. Based on the results we got from the forward pass
earlier:

ReLu(x) = max(x, 0)

𝑑

𝑑𝑥
ReLu(x) = 1(x>0)

𝑑𝑅𝑒𝐿𝑢()

𝑑𝑆𝑢𝑚()
 = 𝑑

𝑑𝑥
ReLu(4) = 1(4>0) = 1

The derivative of the ReLu function with respect to x is one if x is bigger than zero, if not it
is zero. In this case Sum() is 4.

𝑑

𝑑𝑥
 x + c = 1 + 0 = 1

 𝑑𝑆𝑢𝑚()

𝑑𝑀𝑢𝑙(𝑋0,𝑊0)
 = 𝑑

𝑑𝑤0
 x0 + w0 = 1

The derivative of the sum of x and constants will always be one.

𝑑

𝑑𝑥
 cx = c

𝑑𝑀𝑢𝑙(𝑋0,𝑊0)

𝑑𝑊0
 = 𝑑𝑦

𝑑𝑥
 x0 * w0 = x0

22

The derivative of x multiplied with a constant, results in the constant. In this case this is
the input x0.

𝜕

𝜕𝑤0
 ReLu(Sum(Mul(X0, W0), Mul(X1, W1), Mul(X2, W2), Bias)

 = 𝑑𝑅𝑒𝐿𝑢()

𝑑𝑆𝑢𝑚()
 * 𝑑𝑆𝑢𝑚()

𝑑𝑀𝑢𝑙(𝑋0,𝑊0)
 * 𝑑𝑀𝑢𝑙(𝑋0,𝑊0)

𝑑𝑊0

= 1 * 1 * x0 = x0 = 1

Since the partial derivative of a sum is always one, this results in the partial derivative of
a weight being equal to the gradient of the perceptron, which we will calculate later,
multiplied with the partial derivative of the activation function with respect to its input,
multiplied with the input that the weight gets multiplied with in the forward pass.38

2.3.2.5 Gradient
A gradient is a vector made of all the partial derivatives of a function. The gradient of a
neuron consists of all the partial derivatives of the weights, inputs, and bias. It is also
used to describe the impact the output of the neuron has on the output of the ANN. Here
I will explain how the gradients of the neurons are calculated.

In the last layer, the gradients are based on the postprocessing of the outputs of the ANN.
If there is a loss function, for example, the partial derivative of the loss function with
respect to the output of the output neurons.

In the layers before that, the gradient is the sum of the partial derivatives of the output in
all the neurons in the layer after that one. The output of a neuron is used as an input in
each neuron in the layer after. We can calculate the partial derivatives of the ANN with
respect to these inputs and take the sum of them to calculate the impact the output of a
neuron has on the ANN.

Calculating the partial derivatives of the ANN with respect to the inputs works the same
as for the weights. The only part that changes is that at the end, instead of multiplying by
the input, we multiply by the weight.

𝜕

𝜕𝑋0
 ReLu(Sum(Mul(X0, W0), Mul(X1, W1), Mul(X2, W2), Bias)

= 𝑑𝑅𝑒𝐿𝑢()

𝑑𝑆𝑢𝑚()
 * 𝑑𝑆𝑢𝑚()

𝑑𝑀𝑢𝑙(𝑋0,𝑊0)
 * 𝑑𝑀𝑢𝑙(𝑋0,𝑊0)

𝑑𝑋0

38 Kinsley and Kukieła, “Neural Networks from Scratch in Python.”,180.

23

Using all of this, it is possible to calculate the impact each weight and bias has on the
output for a set of inputs. If the derivative of the loss function is also factored in, we can
calculate the impact each weight and bias has on the loss and decrease it based on this
information.39

2.3.3 How I derive the partial Derivatives

In this section I will explain how I implemented the backpropagation in my projects.
Before, I explained how the partial derivatives can be calculated by multiplying the
different partial derivatives of the parts of the chain that come before. I used this property
to separate the backpropagation into different steps that can be repeated and work in
isolation.

Figure 10: Model of a neuron with the weights W1, W2, W3, the inputs X1, X2 X3 and the output y. The bias is not in the
graphic but would be added. 40

The algorithm needs X1-Xn, W1-Wn, and the gradient of the neuron, the partial derivative
of y, to calculate all the partial derivatives in a single neuron. During the forward pass, it
saves all the values, and the weights are already available.

In the last layer, for which the partial derivatives are calculated first during
backpropagation, the partial derivatives with respect to y are one. Depending on how the
output of the ANN is used to solve a task, this partial derivative is different, but here I will
assume that a single raw output is used, and as a result, the gradient is one.

39 Kinsley and Kukieła.
40 Minsky and Papert, “Minsky-and-Papert-Perceptrons.”

24

The partial derivatives with respect to W1-Wn are calculated by multiplying the gradient
of y, the partial derivative of the activation function with respect to its input and the to the
weight corresponding X1-Xn. The partial derivative with respect to the bias is the gradient
of y multiplied with the partial derivative of the activation function with respect to its
input. With this all the weights and biases can be calculated if the gradient of y is known.

The gradient of y in the layers before the last one is equal to the sum of all the partial
derivatives with respect to y as input to a neuron in the next layer. So, the gradient of y of
the first neuron of layer n-1 is the sum of the X1s in all the neurons in layer n. The partial
derivatives with respect to X1-Xn are calculated, similar to the partial derivatives with
respect to W1-Wn before, by multiplying the gradient of y, the partial derivative of the
activation function with respect to its input, and the weight corresponding to W1-Wn.

Starting with the last layer, this can be used to calculate the partial derivatives with
respect to all the weights and biases and at the same time calculate the gradients for the
neurons in the layer before. Working its way backwards, the algorithm can do this for each
layer one at a time.

2.3.4 Reinforcement Learning and Actor-Critic Method

Reinforcement Learning is a class of solution methods that attempts to map actions to
situations using trial and error to maximize a numerical reward. What separates
reinforcement learning from supervised learning is that instead of labelled data, we use
rewards. As a result, we do not know what the best answers are but only how good the
chosen actions are.41

2.3.4.1 Markov decision Process
The basic principle of reinforcement learning is that an agent and an environment interact
with each other. The agent can sense the environment and can perform actions that
affect it. He also has goals, usually certain states of the environment, and it tries to
achieve these goals by choosing actions based on a representation of the current state
of the environment. The relationship between the agent and the environment is
represented using the Markov decision process.

41 Sutton and Barto, Reinforcement Learning : An Introduction, 1f.

25

 “MDPs are meant to be a straightforward framing of the problem of
learning from interaction to achieve a goal.”42

Figure 11: The agent-environment interaction in a Markov decision process. 43

As depicted in Figure 11, each time step t, an agent chooses an action At based on the
state of the environment St. The environment then changes from state St to state St+1
and sends the information of state St+1 and the reward Rt+1 to the agent. The state St+1
is used to decide the next action At+1 while the reward Rt+1 is used to decide if the
actions taken before were good or bad and learn based on this information.

The rewards the agent receives from the environment represent the achievement of goals
or can be negative in case of failures. The agent tries to maximize the total rewards, not
just the immediate rewards. There are a variety of different algorithms that try to learn
from experience to maximize the total reward of future attempts. It uses trial and error to
learn which actions in which states result in the highest rewards.44

2.3.4.2 Solving finite Markov decision processes
A finite Markov decision process consists of a finite number of states and actions and can
be solved using a value function and a policy function.

For the following explanation, I will use a combination of a state-action value function
and a policy that uses the values of this function to create the action probabilities. This is
called Q-Learning and is one of the most intuitive algorithms in reinforcement learning.
The state-action value function is a value function that assigns each combination of state
and action an expected total reward when following the current policy. For finite Markov
decision processes, it can be, in its simplest form, a table.

42 Sutton and Barto, 47.
43 Sutton and Barto, 48.
44 Sutton and Barto, 47f.

26

Figure 12: A state-action value function with four states and four actions, Right, Left, Up and Down. For each state
except state 3, the action with the highest expected total reward is marked green. In state 3 a random action is

selected to ensure exploration. 45

The policy uses this table to decide what action to take. It must balance taking the best
actions with actions it predicts to be worse to ensure exploration. This is one of the main
problems in reinforcement learning and is called the exploration vs. exploitation
dilemma. The agent must explore actions without any known reward at the end since they
might lead to the optimal reward, but they also want to exploit actions they already know
lead to a reward since finding rewards is their goal.46

The policy function creates a probability for each action in a state based on the value
function to determine which one should be performed. For a table as above a greedy
policy function would choose the action with the highest value. A policy function that
balances exploration and exploitation better would be to choose the action with the
highest value nine times out of ten and the rest of the time choose a random one.

Each time a terminal state ends, this could be reaching a destination, winning, or failing,
a new episode starts. Each episode is completely unrelated to the others and has a start
point and an end. At the end of each episode, the total reward is calculated, and all the
chosen state-action pairs that have been chosen along the way get updated according to
an algorithm like the Bellman equation. They should then be closer to the optimal state-
value function and their information more accurate than before. The policy is then able
to choose better actions based on the value function. This is repeated until the
performance converges. There are also continuous tasks that do not have episodes and
go on indefinitely, but they are not relevant for this paper.

There are other value functions, like the state-value function, which will be important
later. Depending on the task, different pairings of value and policy functions lead to better
or worse results.

45 Comi, “How to Teach an AI to Play Games: Deep Reinforcement Learning.”
46 Comi; Kahn, “Reinforcement Learning – Exploration vs Exploitation Tradeoff - AI ML Analytics.”

27

I am using Artificial Neural Networks to approximate the value and policy functions, but
this is far from the only option. Reinforcement learning not only looks at ANNs but has
been used in other areas of machine learning.47

2.3.4.3 Actor-Critic Method
Chat GPT is without doubt one of the most exciting examples of what machine learning is
capable of. OpenAI, the company behind Chat GPT, has been researching artificial
intelligence for years with the goal of ensuring that AI does not become a technology
reserved for a few companies.48

One of their most successful projects was OpenAI Five, an artificial neural network that
taught itself how to play Dota II, a highly complex video game that introduced new
challenges compared to previously solved games like Chess and Go. It only used self-
play to learn. Using Proximal Policy Optimization, a version of the Actor-Critic Method, it
was able to achieve superhuman performance and beat the World Champions.49

Another successful example of the Actor-Critic Method is AlphaStar by Google
DeepMind. It is an artificial neural network that managed to win against professional e-
sport athletes in StarCraft II, a real-time strategy game. It was trained on professional
games and achieved its success by continuing its training using self-play. In self-play an
ANN is trained by playing against older versions of itself.50

The Actor-Critic Method belongs to the family of policy gradient methods. It is based on a
version of the Monte Carlo policy gradient with base line and temporal difference
learning.51

47 Sutton and Barto, Reinforcement Learning : An Introduction, 47f.
48 OpenAI, “OpenAI Five | OpenAI”; OpenAI, “OpenAI Charter | OpenAI.”
49 OpenAI et al., “Dota 2 with Large Scale Deep Reinforcement Learning.”
50 AlphaStar team, “AlphaStar: Mastering the Real-Time Strategy Game StarCraft II - Google DeepMind.”
51 Sutton and Barto, Reinforcement Learning : An Introduction, 321.

28

2.3.4.4 Policy gradient methods
Policy approximation is a class of reinforcement learning methods that completely
separates the policy from the value function. This means that the value function is only
used during training, and afterwards the policy function can solve problems without
consulting the value function. This works great for Artificial Neural Networks since it
simplifies the postprocessing of the output since it works in isolation. It also has the
advantage of being completely online. Different from the Q-learning algorithm I described
earlier, it does not wait until the end of an episode to update the ANNs, instead, they can
be changed at every timestep and do not need something like a bellman equation.52

2.3.4.5 Actor-critic split
The Actor-Critic Method is split into an actor, a policy function that decides what action
to take, and the critic, a state-value function that evaluates the expected reward for the
current state of the environment when following the current policy. The policy function is
the agent, while the critic is an intermediary between the environment and the policy.
During the learning process, the critic is used to evaluate the action taken by the actor by
comparing the state value before and after the action.53

52 Sutton and Barto, 321.
53 Sutton and Barto, 331

29

Figure 13: Graph describing the relationship between the policy function as the actor, the value function as the critic
and the environment. 54

Each timestep, the advantage is calculated, in the graphic, it is called TD error. The
advantage is the difference between the sum of the state value after the action and the
received reward and the expected reward, calculated by the value function, before the
action was taken.

If the advantage is positive, the action taken was better than the average action taken by
the policy in the same state, and it should be reinforced. If it is negative, it should be
disincentivized. Using this, the policy is updated each step according to the feedback
received by the state-value function.

At the same time, the advantage is used to improve the state value. The advantage is
effectively the difference between the expected reward and a more accurate version of
the expected reward since the value function is estimating a timestep less and has more
information. This means that if the advantage is positive, the state value should have
been a bit larger, and if it is negative, the state value should have been smaller. Using this,
we can update the state-value function each step to more closely match the true state-
value function.

54 Lee, “6.6 Actor-Critic Methods.”

30

In terminal states, the state value is hard set to zero, since if there are no steps
afterwards, the expected reward is always zero. Also important is that the size of the
advantage is important since it is used to determine how big the changes to the policy
function and the state value function should be.

Figure 14: Pseudocode for the Actor-Critic Method. δ is the advantage, R is the reward, ∇lnπ(A|S,∅) = ∇π(A|S,∅)/
π(A|S,∅). 55

∇𝜋(𝐴|𝑆, ∅) / 𝜋(𝐴|𝑆, ∅) is the gradient of the policy divided by the probability of the chosen
action being chosen. This is done to ensure that an action that has a small chance of
being chosen is weighted heavier to ensure it stands a chance if it outperforms other
actions.

This way, the policy function should be a bit closer to the optimal policy function with
each timestep, while the value function should approach the optimal value function for
the current policy function.56

55 Sutton and Barto, Reinforcement Learning : An Introduction, 332.
56 Sutton and Barto, 331f.

31

3 Implementation of ANNs into Pong and Footsies
For the remaining part of this paper, I will discuss my implementation of these algorithms.
I will go into the differences of the implementations for Pong and Footsies and elaborate
on some of the problems I faced. The chapters are structured based on what learning
algorithm they use to better illustrate how the game influenced the implementation of the
learning algorithms.

3.1 Background on Programming
For both Pong and Footsies, I forked an open-source version and wrote my algorithms
directly into the source code. This enabled me to directly access the variables and use
them as inputs and have my output directly interface with the game engine instead of
simulating key presses. Both games were made in the game engine Unity and use the
computer coding language C#, which I was already familiar with.

An ANN itself consists of a four-dimensional list of floats that represent each weight and
bias and some additional information like the fitness values. Each “learning attempt” is
saved in a separate object where all the parameters as well as all relevant ANNs are
stored. These objects form a list, which is saved in JSON files between runs. Everything is
single-threaded, and barely any optimization has been done, which most likely impacts
the performance quite badly. Compared to projects like PyTorch, my algorithms are
inefficient and do not use the capabilities of the hardware to the full extent.

Almost all the code has been written by me based on the sources stated and the official
C# and Unity documentation. The few time where I have copied parts of the code from
places like stack overflow have been marked in the code, and sources have been added.

32

3.2 Game Logic and ANN Implementation Objectives

3.2.1 Pong

Game logic: Pong is an old flash game and was one of the first games ever to be created.
It is inspired by table tennis, and the player controls a paddle that moves up and down.
The goal is to hit the ball using the paddle to bounce it back. Every time a player misses,
and the ball goes past the paddle, the opponent scores a point. 57

Figure 15: Screenshot of Pong. The white rectangles on the side are the paddles controlled by the player and the white
square close to the middle is the ball. 58

The goal is to hit the ball using the paddle to bounce it back. Every time you miss, and the
ball goes past you, your opponent scores a point.59

ANN Objective: Based on this game logic, the goal of the implementation was to develop
an ANN that would learn how to move the paddle to never miss the ball.

57 “Pong Game.”
58 “Pong - Play Game Instantly!”
59 “Pong Game.”

33

3.2.2 Footsies

Game logic: Footsies is a very basic 2D fighting game similar to games like streetfighter.
Using a keyboard, the player controls a character and have it move, perform attacks and
blocks against another player.

Figure 16: Screenshot of Footsies. In the top corners the shields represent how often you can block. The rectangles at
the bottom indicate the current score in a best of five. 60

The player can score by KO, hitting the opponent with a special attack. Each round a
player can block three attacks; if he tries to block afterwards, he gets stunned and is
unable to perform actions for a while. The move set consists of walking, a dash, blocking,
two normal attacks, and two special attacks.61

ANN Objective: Based on this game logic, the goal of the implementation was to develop
an ANN that would learn to move and perform attacks and/or blocks in a way that would
enable the character to prevail in the fight against the other character.

60 HiFight, “FOOTSIES - HiFight.”
61 HiFight.

34

3.3 Approach 1: Genetic Algorithm
The artificial neural network I use in the Genetic Algorithms is a fully connected network
using the sigmoid activation function. Each individual is initialized with random values for
all weights and biases.

3.3.1 Pong

3.3.1.1 Implementation
The neural network for Pong has five inputs, which describe the position of the agents
paddle, the position of the ball, and its movement as a 2D vector. It has a single output,
which returns a value between zero and one using the sigmoid function. This value
determines the chosen actions, i.e. the movement of the paddle: over 0.6 is moving up,
under 0.4 is moving down, in between no action is taken. This means that the artificial
neural network has absolute control over what action is taken and does not rely on
randomness.

For Pong, the implementation of the Genetic Algorithm was straightforward:

• Each individual gets a certain number of lives, they play against a perfectly playing
bot I developed, which simply keeps the paddle at the level of the ball and lose a
life every time the ball touches their wall. When they run out of lives, their attempt
is finished, and their fitness score is set in stone.

• During their attempt, they get rewarded for each ball they manage to hit. This
reward is based on how accurately they hit it and on how far the distance they had
to travel to hit it. This is to punish individuals who stay in one spot and just get
lucky. Each point represents a chance at getting picked in the random draw for
reproduction.

• Each new individual is based on two individuals, and each parameter is either
copied from one or the other. For mutation, each individual possesses a mutation
factor, a floating-point value between zero and one, which, for each parameter, is
multiplied with a second random floating-point value, and if the result passes a
threshold, the parameter is mutated. This creates individuals that are highly
mutated and others that are close to unaltered.

• The algorithm also always keeps an unchanged version of the best-performing
individual in the new generation to ensure it does not regress.

3.3.1.2 Result
This algorithm works well and manages to find ANNs that can catch over 99.99% of balls
after running for a couple of hours. The convergence time can vary quite a lot and is
dependent on chance. I was surprised by the possible improvement of a solution, once

35

one is found that works, but it needs to first find something that works better than random
movements to then improve it.

The solution it finds is quite a simple one. It applied the same logic as the bot and simply
tries to keep the paddle on the same height as the ball. If the ball is beneath the paddle,
it moves down, and if it is above, it moves up. While this essentially the same the perfectly
playing bot I implemented does, the bot remains more accurate. The reason is that the
bot is designed to always be correct, while the ANN may only achieve the same level of
accuracy if trained to perfection.

3.3.2 Footsies

3.3.2.1 Implementation
For Footsies, the input data consists of seventeen variables that describe the positions
of both characters, their current action, and where within the action they are. The ANN
has two outputs; one represents the input for the attack button, while the other one
defines if the character should move. These are the same options the player has:
attacking, moving forward, and moving backwards. All other actions, like blocking and
special attacks, are performed by some combination of movement and attack inputs.

The algorithm for Footsies is, for the most part, the same as for Pong. The only big
difference is the process of assigning fitness values. The problem with Footsies in this
context, is, that I do not have a way of objectively assessing the performance like I do for
Pong. So, the approach is that instead of trying to measure its absolute performance, I
measure it in relation to the other individuals in the same generation.

The way I do this is by letting them play against each other. Each generation I throw all
contestants into a tournament, and their ranking determines their chances when
reproducing. For the tournament design, I have tried out quite a few different algorithms.
I decided against a bracket-type tournament, because they can be quite complicated and
have trouble ranking the worse performing indifviduals. The reason being their focus on
who places on the podium while disregarding anything below it.

The most interesting solution I tried was repurposing a bubble sort algorithm, where
instead of comparing values, to decide if I should switch the places of two individuals, I
had them compete and the winner got the better position. This worked quite well. The
problem was, that it was not that efficient with larger population sizes, and since the
outcome of the same duel could be different, it would never flag as the correct order and
only end when a hard cap was reached.62

The solution that ended up working the best was an Elo rating system. The algorithm, that
competitive chess and nowadays many PvP games use, works by assigning an Elo rating

62 “Bubble Sort Algorithm - GeeksforGeeks.”

36

to each player, or here individual, and searching for an opponent with a similar Elo rating.
The Elo rating is used to calculate the win probabilities of each player. After the game, the
win probabilities determine how the Elo ratings of each player change. A win against a
stronger opponent gets rewarded more, and a loss against a weaker opponent gets
punished more. This ensures, that the risks and rewards of having a stronger or weaker
opponent always stay the same in relation to each other. Another big advantage is, that I
can end the tournament before a final winner is determined and have multiple individuals
be equal. This means I can increase the population size by a lot without raising the
computation time exponentially. At the end, I use the Elo rating as fitness values.63

3.3.2.2 Result
The performance of the Genetic Algorithm for Footsies is questionable at best. While the
ANNs are constantly evolving, and learn to beat their old versions, a real improvement
happens only up to a certain point. The problem is that it gets stuck in a rock-paper-
scissors-like situation where they adopt a dominant strategy and outperform their
opponents to subsequently spread this strategy through the next generation. This
strategy is dominant, until an individual finds a different strategy that counters the
dominant one. This can happen over and over until a previously dominant strategy gets
adopted again from where another loop will start. This is a common problem in machine
learning when using self-play. It is also quite hard to make reasonable measurements of
the performance, as the objective, which is beating the enemy, changes when the enemy
changes.64

There are quite a few parameters, that can be adjusted to improve the Genetic Algorithm.
The most important ones being the population size and the number of lives, or fights in
the case of Footsies, each individual gets. Both increase the improvement with each
generation, while also increasing the time spent learning. Especially for Footsies, a large
population size takes a long time to set the fitness values and is very inefficient. If the
number of lives is increased, the consistency of the learning rate increases since the
observed data for each individual rises and the fitness values reflect the true fitness of
the individual better. If the number of lives is too small, the measured accuracy makes
big jumps in both directions.

63 Kolebka, “Developing an Elo Based, Data-Driven Rating System for 2v2 Multiplayer Games | Towards Data
Science.”
64 Simonini, “Self-Play: A Classic Technique to Train Competitive Agents in Adversarial Games - Hugging
Face Deep RL Course.”

37

Good parameters have a big impact on the performance of any machine learning
algorithm and finding them is mostly reliant on trial and error. I was able to find working
parameters for my projects, but they are probably far from perfect and limit how fast the
ANNs can learn.

3.4 Approach 2: Reinforcement learning
The way the ANNs chose their actions for the reinforcement learning algorithm is different
from the way they did for the Genetic Algorithm. Previously, the actions were chosen
based on the size of the output values, if output a is bigger than 0.5, action a is performed.
Now, the outputs of the ANN are normalized using a SoftMax function. This results in
action probabilities. Each action gets an assigned probability, which is determined by the
size of the correlating output. This is to ensure that each action always has a chance of
being chosen. The Genetic Algorithms solve the problem of balancing exploration and
exploitation by having a pool of different ANNs. In reinforcement learning, the action
probabilities ensure that the exploration never stops.65

I have also implemented He-initialization, which initializes biases to zero and weights
based on a normal distribution with the goal of keeping the variance to a minimum. This
should provide a better basis for improvement. I also exchanged the sigmoid function for
a rectified linear function that can return true zeros and larger numbers, which helps the
ANN converge. It is also easier to differentiate and does not have the problem of vanishing
gradients, which I will talk about later.66

3.4.1 Pong

The reinforcement learning algorithm consists of two ANNs. The policy function uses the
same inputs as the ANNs of the Genetic Algorithm use but now has two outputs instead
of one. This is to accommodate the action probability for moving up and down. The value
function also uses the same input but only has one output, which returns the expected
reward in the current state when following the current policy.

Each episode is defined as the ball crossing the court, bouncing of the opponent or his
wall, and hitting the agent or his wall. This means that the ball hitting the agent, or his
wall, is a terminal state, ending the episode and starting a new one. If the agent hits the
ball, he gets rewarded; if he misses it, he gets punished.

65 Lee, “2.3 Softmax Action Selection.”
66 Bendersky, “The Softmax Function and Its Derivative - Eli Bendersky’s Website”; Goel, “Kaiming He
Initialization. We Will Derive Kaiming Initialization… | by Shaurya Goel | Medium.”

38

3.4.2 Footsies

For Footsies, the policy function and the value function use the same set of inputs, which
are very similar to the ones in the Genetic Algorithm. The value function has one output,
and the policy function has seven: one for each action. Each episode is one round in-
game. At the end of each episode, the algorithm gets rewards based on whether it has
won or lost. During the episode, it can earn rewards by, for example, breaking a shield.

Originally, the algorithm was supposed to use self-play to learn. In theory, playing against
old versions of itself should allow the algorithm to continuously improve, in practice, this
never worked properly. The reinforcement learning algorithm for Footsies in general does
not work as I had hoped. Most likely there are still some bugs I never found, that would
solve the problems the algorithm has. It's hard to determine whether the problem with
the self-play lies in the algorithm or my code. A second problem was that it was hard to
measure the performance of the algorithm. There is a preprogrammed bot in Footsies
that can be used as a practice dummy, so I switched out the self-play mechanism for this
bot as a training partner.

There are a few benefits to using the bot as a training partner: The goal is clearly defined
because the opponent does not change. Before, the goal was improvement in general,
and the only way to measure the progress was by playing against bots that did not
accurately reflect the goal. Measuring performance is easier and more reliable since the
goal is now to win against one specific bot, which can also be used to measure progress.

With this change, the data indicates that the algorithm can learn a bit. It is far from
perfect, it has troubles getting high win rates consistently, and it oftentimes evolves
backwards for unknown reasons. But it can improve and play well enough to beat the bot
more often than it loses.

39

3.5 Comparison of the Approaches
Comparing the genetic and reinforcement learning algorithms based on their
performance does not make a lot of sense. The effect that the parameters have on the
performance of these algorithms is too impactful to be ignored, and it is hard to test how
close to optimal the chosen parameters are. I will talk more about optimizing the
parameters later, but assuming my parameters are optimal and using them for
comparisons between algorithms would be a mistake. Also, my implementation is far
from perfect, and the level of efficiency would have to be close for comparisons, which I
cannot guarantee. What I will do instead is compare the problems they face and where
their advantages lie.

The reinforcement learning algorithm works quite well. At first, the algorithm needs a bit
of time until the value function has achieved a basic accuracy and is effective at training
the policy. Afterwards, the improvement rate ramps up quickly until it reaches an
accuracy of around 85%, where the curve starts to flatten out.

Figure 17: Performance of the reinforcement learning algorithm with the following parameters:

 Value function Policy function
Learning rate 0.001 0.0001
Layer count 2 2
Layer size 6 6
Decay 0.99 0.99

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

Ac
cu

ra
cy

Episodes [in thousands]

Performance of the Actor-Critic Method in Pong

40

There are two possible reasons for this: If the accuracy is high, when the agent fails, it is
very close. The value function has problems distinguishing this from hitting, since the
difference can be very small. This means that in comparison the approximation of the
state value is barely any different for a state where the agent ends up hitting the ball to
one where the agent misses it. This in turn reduces the magnitude of the advantage and
slows down any changes to the neural network since the values are much smaller.

The second reason is a result of how the gradients are calculated. When the SoftMax
function approaches a probability of 100% for one action, all the partial derivatives
approach zero. This being the vanishing gradient problem I mentioned earlier in context
to the sigmoid function.

The problem with vanishing gradients, is, that when you backpropagate, it affects all
partial derivatives that come before it: in this case all the weights and biases. This means
that their partial derivatives also approach zero, which immensely slows down any
changes in the weights and biases. Not only that, but the partial derivatives of the SoftMax
function with respect to its output approaching zero also mean that the inputs into the
SoftMax function have a smaller effect on the output and changes to the inputs have a
smaller impact on the output.

This is a behaviour we normally want to achieve. It ensures that exploration never fully
stops, and usually this small chance of a different action being chosen barely has an
effect. The problem is that in Pong, the speed of the ball along its x-axis is constant, so if
the angle of the ball is steep, it moves faster than normally. Still, if moved perfectly, the
paddle will always be able to catch the ball when following it. These steep angles pose a
problem for the reinforcement learning algorithm, since it is not able to move perfectly.
The Genetic Algorithm does not have this problem, for it does not use action
probabilities.

41

Figure 18: Performance of the Genetic Algorithm in relation to the generation. Here the Genetic Algorithm had a
population size of 200, 10 lives and a mutation threshold of 0.1.

The graph for the Genetic Algorithm has fewer data points since I can only measure data
at the end of each generation. I tried slowing down the progress to increase the
resolution, but that leads to problems.

At the start of the learning process, the curve of the Genetic Algorithm has problems. It
needs to get lucky and find an individual with a minimally better performance than the
others and can then provide a starting point for future improvements. This can be
improved by increasing the population size and number of lives, but they both increase
the time it takes for a generation to run and decrease the resolution even further.

A second problem is that the data, which the fitness value is based on, is quite limited,
and through randomness, a bad solution can achieve a high fitness value and set the next
generation back.

In return, once the Genetic Algorithm has surpassed the hurdle at the start, it does not
have the vanishing gradient problem and is able to achieve an accuracy of close to 100%
without the same problems the reinforcement learning algorithm faces. Afterwards, it
also starts having problems with improving further.

While that does not affect the curve, since it describes the relationship between accuracy
and generations, the time it takes to set the fitness value for each generation increases
as the accuracy increases since each individual lives longer and takes more time. I
hardcapped the amount of total hits before ending the attempt. Else an ANN with 100%
accuracy would live forever and essentially stop the learning algorithm before ever getting
saved.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

Ac
cu

ra
cy

Generations

Perfomance of the Genetic Algoritm in Pong

42

In my opinion, the Genetic Algorithm is only as successful as it is, due to the simplicity of
the problem. It can easily stumble upon a solution and improve it, since the number of
parameters is quite small and the solution simple. For more complex problems, the
algorithm would have to try way more, and its performance would decrease. In Footsies,
the performance is already worse than in Pong. It takes a long time to find an
improvement, and it has troubles distinguishing between situations. It does not really
change its actions based on the state and instead finds the best combination of inputs to
spam. The Genetic Algorithm is also very inconsistent and unstable, small changes to the
parameters can lead to complete failure.

43

4 Exploring parameters
Parameters can have a big impact on how fast an ANN is able to learn. I want to find out
how they influence the learning process, and I want to try to optimize the parameters to
find out what my algorithms are capable of.

4.1 Method

All the tests are done in Pong, as it is faster, easier to measure, and easier to compare
results. On top the learning algorithms for Footsies have some problems that I was
unable to fix and do not perform as well as the algorithms for Pong.

The learning algorithm and the measurements use a perfect enemy that catches every
ball. The perfect enemy tries to always keep the same position on the y-axis as the ball, if
perfected this leads to an accuracy of one and is also the strategy the learning algorithms
usually try to learn.

In normal Pong, the rebound angle is based on the impact position of the ball on the
paddle. For the perfect bot, this is changed, and the rebound angle is random within the
same range as the normal rebound angle. This is to ensure that all the, in the normal game
possible, states are represented in the training data.

In the training algorithm and these tests, the goal is not to win against the opponent but
to catch every ball. This makes training a lot easier and, when perfected, would still make
the algorithm unbeatable. I measure the performance of the algorithm with accuracy: the
number of balls the algorithm managed to hit divided by the total number of tries. The
goal is an accuracy of one, where every ball is hit, and the algorithm is unbeatable. A
random algorithm, like standing still, is around 0.25 accuracy because the paddle covers
around 25% of the wall.

All the tests are done in the same version of the algorithm. During the learning process,
each episode is marked as either a success or a miss. This means that every time the ball
hits the paddle the algorithm controls or the wall it is supposed to protect, the algorithm
gets a reward, or a punishment and a new episode starts. Every thousand episodes the
accuracy is measured. This means each accuracy value represents the performance of
the policy over the last thousand episodes.

I set the goalpost for a successful learning attempt at 0.99 accuracy to have a more
absolute measurement, the number of episodes it takes the algorithm to reach 0.99
accuracy. A value that is easier to compare and clearly defines a successful learning
attempt. I consider a failed learning attempt one, that is stuck at the minimum 0.25
accuracy after a couple hundred thousand episodes.

44

4.2 Parameters
There are a lot of parameters and details of the algorithm that could be changed to
improve the performance. I focused on just the size of the ANNs and the learning rate and
left everything else constant.

I decided not to do any changes that would require rewriting parts of the code for each
test, like different inputs or a different reward function. Rewriting code would have
required time and potentially introduced new problems.

All the tests required a lot of time since the training is quite slow. The size of the ANNs not
only has a big influence on the performance of the learning algorithm, but it also
determines the complexity of the task the algorithm is able to solve. This makes it more
interesting than most parameters. The learning rate is probably the parameter with the
biggest impact on how long it takes the algorithm to succeed. It is also often the first
parameter that people try to optimize.

4.3 Hypotheses

My hypotheses for the experiments are as follows:

4.3.1 Size of the ANNs

1. There is a minimum size the ANNs need to be able to find an optimal solution.
2. Algorithms with this minimal size will learn faster than algorithms with larger

ANNs.

4.3.2 Learning Rate in Reinforcement Learning

3. Small learning rates will lead to a flat curve and slow down the learning process.
4. Large learning rates can lead to a worse learning process.
5. Too large learning rates can lead to complete failure of the algorithm.

45

4.4 Results

4.4.1 Baseline

First, I would like to establish a baseline for comparison. All the parameters are chosen
based on what I noticed worked quite well, this means they are already optimized to some
degree.

Figure 19: Performance of multiple learning attempts with the same parameters.67

Table 1: The parameters used for all the learning attempts in Figure 19.

Parameters: Value function Policy function

Layer count 2 2

Layer size 6 6

Learning rate 0.001 0.0001

67 See Appendix D

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Ac
cu

ra
cy

Episodes [in thousands]

Perfomance of the Actor-Critic Method in Pong for
size 2,6

A B C D E F G Average

46

Table 2: Analysis of points where the policy reaches an accuracy of 0.99. Same data set as Figure 19.

Descriptive Statistics

 Episodes to reach 0.99 accuracy [in thousands]

Valid 8

Mean 53.000

Std. Deviation 12.570

Minimum 33.000

Maximum 69.000

The test data shows that the difference between learning attempts, even with the same
parameters, is high. The high standard deviation and the big difference between the
minimum and maximum show that repeated tests with the same parameters can have
outcomes with significant differences.

A problem, that the graph does not depict, are failed learning attempts. There is an
inherent instability in ANNs that can lead to not learning anything or the performance
worsening.

47

Figure 20: Two ways the algorithm can get stuck and stop converging. A learns at the start and then suddenly falls
back to 0.25, B never improves. Both use the parameters described in Table 1.68

Case A happens very rarely, the algorithm starts improving, but at some point, it drops
back down to 0.25 and stays there. Because it happened so rarely, it is hard to pinpoint
the problem, but it is most likely due to an exploding gradient. This means that either the
advantage or the partial derivative of a weight or a bias is bigger than it should be and one
or multiple weights or biases are changed more than they should in a single update. This
messes up the ANN and is very hard to recover from.

Case B happens more frequently, with these parameters: about 15% of all attempts are
unable to improve at all and are stuck at 0.25 accuracy. This is most likely due to a bad
set of weights after the initialization. When I refer to unsuccessful learning attempts in
this paper, I will, unless specifically stated otherwise, refer to this specific case of never
learning anything.

68 See Appendix C

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Two different ways of failing

A B

48

Figure 21: Three learning attempts that start with the same set of weights instead of each one starting with a unique
set of randomly generated weights. This shows the effect variables other than initialization have on the training.

Parameters as specified in Table 1.69

Figure 21 proves that the initialization of the weights has a big impact on the learning
process of the algorithm. Compared to 19, the difference between the learning attempts
in Figure 21, where they started with the same weights, is way smaller.

Figure 21 also indicates that the initialization of the weights is not the only variable that
affects the training. While the graphs are closer in form than the ones in Figure 19, there
is still a difference in how fast they converge. In my opinion this is due to the difference in
training data. While the automatically generated training data should be about the same,
it is not in the same order, which affects the training.

I repeated the test with sets of weights that were not successful in training: The results
showed, that sets of weights that were unsuccessful once were never successful. But my
sample size was very small, so these results could be incomplete.

4.4.2 Size of ANNs

For these tests I decided to not separate the size into the number of hidden layers and
the size of each hidden layer and instead look at both parameters at the same time. This
still shows the relationship between the general complexity of the ANNs and the
performance of the algorithm, but it probably hurts the optimization a bit.

69 See Appendix B

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26

Ac
cu

ra
cy

Episode [in thousands]

Three learning attempts starting from the same
set of weights

A B C

49

Figure 22: Average performance of multiple learning attempts with the same-sized ANNs. The name of each data set
is x,y. X is the number of hidden layers and y is the number of neurons in each hidden layer, the rest of the parameters
are the same as before. Only successful learning attempts are represented, unsuccessful attempts were discarded.70

70 See Appendix E

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351 401 451

Comparing the performance of the Actor-Critic
Method with different sized ANNs

3,6 2,6 1,10 1,6 1,3 1,1

50

Figure 23: The number of episodes [in thousands] it took each size in Figure 22 to reach 0.99 accuracy versus the total
number of neurons in all hidden layers.

Table 3: Kendall’s correlations between the total number of neurons and the number of episodes [in thousands]
needed to reach 0.99 accuracy and between the total number of neurons and the chance of success.71

Kendall's Tau Correlations

Variable Number of neurons

1. Number of neurons Kendall's Tau B —

 p-value —

2. Episodes to 0.99 accuracy Kendall's Tau B -0.467

 p-value 0.272

3. Chance of Success Kendall's Tau B 0.414

 p-value 0.251

71 See Appendix E

51

The trendline in Figure 23 shows a negative correlation between the total number of
neurons in the hidden layers and the time it takes the algorithm to succeed. This means,
that with added complexity, the time it takes the algorithm to succeed, is reduced. Table
3 shows that the p-value for this correlation is quite large, way above the baseline that
would make it considered statistically significant.

4.4.2.1 Hypothesis 1: There is a minimum size the ANNs need to be able
to find an optimal solution.

All the sizes down to 1,1 were able to find an optimal solution. Disappointingly, my
algorithm is unable to create ANNs that do not have any hidden layers. Figure 22 proves
that either there is not a minimal size necessary, and my hypothesis is incorrect, or the
solution to Pong is so simple, that it can be solved with basically anything.

Literature suggests, that for every task there is a necessary minimal ANN size necessary.
With this in mind, and since the solution to Pong is quite simple, I conclude, even though
my test results in Figure 22 do not confirm this, that there is a minimum size the ANNs
need to be able to find an optimal solution.72

4.4.2.2 Hypothesis 2: Algorithms with this minimal size will learn faster
than algorithms with larger ANNs.

Figure 23 indicates a negative correlation between the size of the ANNs and the
convergence time. Figure 22 shows that the ANN size with the fastest convergence time
is 2,6, while the smaller ANNs often underperform in comparison. Especially 1,1 is slow,
and the graph looks very unstable. I think the reason for the worsening performance with
smaller ANNs is that they become unstable. The smaller they are, the more their graph
goes up and down again instead of continuously improving. The data in Figure 22 clearly
shows that the smallest working ANN size is not optimal. The p-value in Table 3 shows
that the statistical significance of this test is quite low.

72 Ho and Dinh, “Searching for Minimal Optimal Neural Networks.”

52

Figure 24: The chance of success for each size in Figure 22 versus the total number of neurons in the hidden layers.73

The trendline in Figure 24 states a positive correlation between the total number of
neurons in the hidden layers and the chance of success. Table 3 shows that the p-value
of this correlation is too large to be considered statistically significant.

I did not expect that the size of the ANN would influence the success rate of the algorithm.
Figure 24 shows a positive correlation between the number of neurons and the chance of
success. Again, the p-value in Table 3 is quite low, but the difference in success rates
between algorithms with smaller and larger ANNs is significant.

4.4.3 Learning Rate in Reinforcement Learning

The learning rate controls how big the changes to the weights and biases are during
gradient ascent. The Actor-Critic Method needs two learning rates, one for the agent and
one for the critic. The learning rate of the critic should always be bigger than the learning
rate of the agent. This is to ensure that the critic can react fast enough to changes in the
actor. For all my tests, the learning rate of the critic is larger than the learning rate of the
actor by a factor of ten. This is based on recommendations from online sources, and I
decided that testing the effect of different ratios would take a lot of time and probably not
have a significant impact.

73 See Appendix E

53

Figure 25: Performance of learning attempts with different learning rates for the actor and the critic. The name of each
data set is “x, x is the learning rate of the critic. The learning rate of the actor is smaller by a factor of ten, so x/10.74

Table 4: The parameters used for all the learning attempts in Figure 25.

Parameters: Value function Policy function

Layer count 2 2

Layer size 6 6

Learning rate x x/10

74 See Appendix A

0

0.2

0.4

0.6

0.8

1

1.2

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Ac
cu

ra
cy

Episodes [in thousands]

Comparing the performance of the Actor-Critic Method
with different learning rates

"0.0001 "0.0004 "0.0005 "0.0006

"0.0007 "0.0008 "0.0009 "0.001

54

Figure 26: Zoomed in version of Figure 25 for readability.

Figure 27: The number of episodes [in thousands] it took each learning attempt in Figure 25 to reach 0.99 accuracy
versus learning rate. 0.0001 was left out because it made the graph unreadable.

Figures 25–27 show that the optimal learning rate is around 0.0006. Especially when the
learning rate is lowered, the performance starts to decline rapidly. Higher learning rates
also decrease in performance, but the effect is not as strong.

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41

Ac
cu

ra
cy

Episodes [in thousands]

Comparing the performance of the Actor-Critic Method
with different learning rates, magnified

"0.0001 "0.0004 "0.0005 "0.0006

"0.0007 "0.0008 "0.0009 "0.001

55

4.4.3.1 Hypothesis 3: Small learning rates will lead to a flat curve and
slow down the learning process.

Figure 25 and Figure 27 show a decrease in performance with decreasing learning rates
after a certain point. When compared to the best-performing learning rates, the smaller
learning rates are very flat and take a long time to converge. This is due to the small
updates, that need to accumulate to make a significant difference in performance.

4.4.3.2 Hypothesis 4: Large learning rates can lead to a worse learning
process.

Figure 25 shows that the algorithms with the largest learning rates are not the best
performing ones. I thought that this would be because of instability when each individual
update is too big. Based on my sources, that is quite likely the reason why the algorithms
with larger learning rates underperform, but my test results do not show this. Based on
my test results, I can only conclude that large learning rates can lead to a worse learning
process, but I cannot explain the reason for this behaviour.75

4.4.3.3 Hypothesis 5: Too large learning rates can lead to complete
failure of the algorithm.

I did not include any failed learning attempts in my test results, except for Figure 20. They
take up a lot of space and do not contain any relevant information. When the learning rate
is increased too much, it results in a crash. It looks a lot like Case A in Figure 20, which
absolutely makes sense. With a larger learning rate, the probability of an exploding
gradient increases as well. This means, that if the learning rate is too large, it can lead to
complete failure of the algorithm.

75 Brownlee, “Understand the Impact of Learning Rate on Neural Network Performance -
MachineLearningMastery.Com.”

56

5 Conclusion
For this paper I had two objectives, to understand how algorithms like the Actor-Critic
Method or the Genetic Algorithm work and try to implement them myself.

The Genetic Algorithm provided good results for both Pong and Footsies. Especially for
Pong the performance was better than what I expected. It achieved near perfect accuracy
and rivalled the performance of the Actor-Critic Method. However, the Genetic Algorithm

demonstrated an advantage in handling steep ball angles due to its lack of reliance on action

probabilities. For Footsies, the algorithm achieved moderate success, learning basic

strategies but struggling with the evolving nature of self-play. The performance was therefore
far from optimal, and it had problems learning anything complex and reacting to the
enemy.

The Actor-Critic Method worked well for Pong, especially after the optimization of the
parameters it was able to learn fast and achieve high accuracy quite consistently. The
implementation for Footsies had more problems, the self-play mechanism it had
originally used did not work as hoped. Modifications and training against a pre-
programmed bot resulted in improvements, but it maintained to have problems with
consistency and was only able to achieve a limited level of performance.

During the process of programming my algorithms and writing this paper I had two
“phases” of learning. First, I had to learn enough about the topic to be able to write
implement these algorithms from scratch, this required a deep understanding of how an
Artificial Neural Network is structured, used and the algorithms needed to train it. Based
on this theoretical basis and my experience in applying it I can confidently say that I
understand how Artificial Neural Networks, and a lot of algorithms surrounding it work.

Afterwards I tested my implementations, turned the knobs that determine the details of
how the algorithms work and took measurements. My tests showed that the solution to
Pong is not only very simple, but also requires only a minimal ANN. If an ANN with such a
limited size can solve task like Pong, the complexity of tasks larger ANNs, when trained
perfectly, could solve, must be immense.

I thought it was perfectly logical, that the fewer variables a learning algorithm has to
optimize, the faster it is able to optimize all of them. My results show that this assumption
is not only wrong, but the contrary is happening. The more complex the ANN is the easier
it can learn. For a biological being, this would make sense. The smarter something or
someone is, the easier it is to learn something new. But an ANN is not intelligent, no
matter how big it is. It is only a collection of optimized functions, it is not supposed to
work like a truly intelligent being, so this still throws me off.

57

The effect the learning rate has on the performance matches my expectations. It has a
big impact on the effectiveness of the algorithm, and I was able to find an optimal value
to decrease the time it takes for the algorithm to learn.

I successfully developed AI systems capable of mastering Pong, demonstrating that it is
possible to apply Artificial Neural Networks of minimal complexity to such a use case and
still achieve almost 100% accuracy. While the algorithms for Footsies showed promise,
further research and optimisation would be required to achieve human-level
performance.

58

6 Acknowledgements
I thank my tutor Patrik Marxer for his guidance and support in writing this paper. I would
also like to thank Adrian Hutter, who helped me get out of a rough spot during the
programming of the practical project. I am grateful to my friend Damian Honegger for
helping me with some of the statistical analysis. Finally, I would like to thank all the
people who read my paper and helped me with their feedback.

7 Declaration of Authenticity
I declare that I completed this thesis independently and was only aided by the tools
listed.

„Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig und ohne Benützung
anderer als der angegebenen Quellen oder Hilfsmittel verfasst bzw. gestaltet habe.“

59

8 Reflection
Working on this project was a deeply rewarding yet challenging journey. The goal was to
develop artificial neural networks capable of learning to play two games: Pong and a 2D
fighting game, Footsies, using both a Genetic Algorithm and the Actor-Critic Method.
While I achieved some success with Pong, the Footsies implementation proved to be a
much more complex challenge. Reflecting on the process, several key insights stand out,
both technical and personal.

One of the biggest challenges in the project was debugging and refining the algorithms.
With ANN training algorithms, I had to wait for the results of the training attempt before I
could judge if my changes fixed the problems or had the desired effect which could take
hours. This led to the debugging taking a long time and pushing my writing back more and
more to the point where I had to leave the Footsies project in a half-working state.

Despite its challenges, this project was an invaluable learning experience. It deepened
my understanding of neural networks, Genetic Algorithms, and reinforcement learning
techniques. I also gained a better appreciation for the balance between theoretical
planning and practical implementation. The frustration of debugging, while often
overwhelming, taught me resilience and the value of approaching problems
systematically.

The experience also highlighted the importance of adaptability. When the Footsies
algorithms failed to perform as expected, I had to shift the focus of my written work to
what worked and decided to dive deeper into the topic of parameters. While this was
stressful, it taught me to focus on prioritizing what was feasible within the constraints
and to frame setbacks as opportunities to learn.

For the longest part of the project my time management was good. I was on top of
deadlines set by myself or my tutor. After I got the feedback for my first draft, motivation
was low, and I progress was slow. By the time I implemented all the feedback I got from
the first draft, I only had around a week left and the whole reviewing process ended up
rushed and the last few days before the deadline were very stressful. If I were to undertake
a similar project again, I would leave more time for revisions.

Overall, this project thought a me lot, not only about the subject itself, but also about the
challenges with bigger projects and the importance of time management.

60

9 Bibliography
AlphaStar team. “AlphaStar: Mastering the Real-Time Strategy Game StarCraft II - Google DeepMind,”
January 24, 2019. https://deepmind.google/discover/blog/alphastar-mastering-the-real-time-
strategy-game-starcraft-ii/.

AnalytixLabs. “A Complete Guide to Genetic Algorithm — Advantages, Limitations & More | Medium,”
January 29, 2024. https://medium.com/@byanalytixlabs/a-complete-guide-to-genetic-algorithm-
advantages-limitations-more-738e87427dbb.

Bendersky, Eli. “The Softmax Function and Its Derivative - Eli Bendersky’s Website,” October 18, 2016.
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/.

Brownlee, Jason. “4 Types of Classification Tasks in Machine Learning -
MachineLearningMastery.Com,” August 19, 2020. https://machinelearningmastery.com/types-of-
classification-in-machine-learning/.

———. “A Gentle Introduction to the Rectified Linear Unit (ReLU) - MachineLearningMastery.Com,”
April 20, 2020. https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-
learning-neural-networks/.

———. “How to Choose an Activation Function for Deep Learning - MachineLearningMastery.Com,”
January 22, 2021. https://machinelearningmastery.com/choose-an-activation-function-for-deep-
learning/.

———. “Understand the Impact of Learning Rate on Neural Network Performance -
MachineLearningMastery.Com,” September 12, 2020.
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-
learning-neural-networks/.

“Bubble Sort Algorithm - GeeksforGeeks,” October 6, 2024. https://www.geeksforgeeks.org/bubble-
sort-algorithm/.

Codecademy. “Binary Step Activation Function | Codecademy,” July 16, 2023.
https://www.codecademy.com/resources/docs/ai/neural-networks/binary-step-activation-
function.

Comi, Mauro. “How to Teach an AI to Play Games: Deep Reinforcement Learning.”
https://towardsdatascience.com/how-to-teach-an-ai-to-play-games-deep-reinforcement-learning-
28f9b920440a, November 2018.

Dawkins, Paul. “Calculus I - Chain Rule.” Accessed December 11, 2024.
https://tutorial.math.lamar.edu/classes/calci/chainrule.aspx.

DeepAI. “Vanishing Gradient Problem Definition | DeepAI.” Accessed December 11, 2024.
https://deepai.org/machine-learning-glossary-and-terms/vanishing-gradient-problem.

GeeksForGeeks. “Layers in Artificial Neural Networks (ANN) - GeeksforGeeks,” July 19, 2024.
https://www.geeksforgeeks.org/layers-in-artificial-neural-networks-ann/.

Goel, Shaurya. “Kaiming He Initialization. We Will Derive Kaiming Initialization… | by Shaurya Goel |
Medium,” July 14, 2019. https://medium.com/@shauryagoel/kaiming-he-initialization-
a8d9ed0b5899.

61

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
https://www.deeplearningbook.org/.

HiFight. “FOOTSIES - HiFight,” 2018. https://hifight.github.io/footsies/.

Ho, Lam Si Tung, and Vu Dinh. “Searching for Minimal Optimal Neural Networks,” September 27,
2021. https://arxiv.org/abs/2109.13061v1.

IBM. “What Is Gradient Descent? | IBM.” Accessed December 11, 2024.
https://www.ibm.com/topics/gradient-descent.

Jander, Filip. “Programming a Mediocre Neural Network From Scratch.” Accessed December 11,
2024. https://www.filipjander.com/2019/02/programming-mediocre-neural-network.html.

Kahn, Tanwir. “Reinforcement Learning – Exploration vs Exploitation Tradeoff - AI ML Analytics.”
Accessed December 11, 2024. https://ai-ml-analytics.com/reinforcement-learning-exploration-vs-
exploitation-tradeoff/.

Katoch, Sourabh, Sumit Singh Chauhan, and Vijay Kumar. “A Review on Genetic Algorithm: Past,
Present, and Future.” Multimedia Tools and Applications 80, no. 5 (February 1, 2021): 8091–8126.
https://doi.org/10.1007/S11042-020-10139-6/FIGURES/8.

Kim, Sung. “PyTorch Lecture 03: Gradient Descent - YouTube.” Accessed December 11, 2024.
https://youtu.be/b4Vyma9wPHo?si=F-8kuvb4mfmMCTn2.

Kinsley, Harrison, and Daniel Kukieła. “Neural Networks from Scratch in Python,” n.d.

Kolebka, Lazare. “Developing an Elo Based, Data-Driven Rating System for 2v2 Multiplayer Games |
Towards Data Science,” September 6, 2023. https://towardsdatascience.com/developing-an-elo-
based-data-driven-ranking-system-for-2v2-multiplayer-games-7689f7d42a53.

Lee, Mark. “2.3 Softmax Action Selection,” January 4, 2005.
http://incompleteideas.net/book/ebook/node17.html.

———. “6.6 Actor-Critic Methods,” January 4, 2005.
http://incompleteideas.net/book/first/ebook/node66.html.

MathIsFun. “Partial Derivatives.” Accessed December 11, 2024.
https://www.mathsisfun.com/calculus/derivatives-partial.html.

Minsky, Marvin, and Seymour Papert. “Minsky-and-Papert-Perceptrons,” 1969.

Mishra, Mohit. “The Curse of Local Minima: How to Escape and Find the Global Minimum | by Mohit
Mishra | Medium,” June 1, 2023. https://mohitmishra786687.medium.com/the-curse-of-local-
minima-how-to-escape-and-find-the-global-minimum-fdabceb2cd6a.

NCL. “Numeracy, Maths and Statistics - Academic Skills Kit.” Accessed December 11, 2024.
https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/core-
mathematics/calculus/partial-derivatives.html.

Nielsen, Michael. “Using Neural Nets to Recognize Handwritte Digits | NeuralNetsAndDeepLearning,”
December 2019. http://neuralnetworksanddeeplearning.com/chap1.html.

OpenAI. “OpenAI Charter | OpenAI.” Accessed December 11, 2024. https://openai.com/charter/.

———. “OpenAI Five | OpenAI,” June 25, 2018. https://openai.com/index/openai-five/.

62

OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, et
al. “Dota 2 with Large Scale Deep Reinforcement Learning,” December 13, 2019.
https://arxiv.org/abs/1912.06680v1.

Patel, Meet. “Understanding the Rectified Linear Unit (ReLU): A Key Activation Function in Neural
Networks | Medium,” April 20, 2024. https://medium.com/@meetkp/understanding-the-rectified-
linear-unit-relu-a-key-activation-function-in-neural-networks-28108fba8f07.

“Pong - Play Game Instantly!” Accessed December 11, 2024. https://freepong.org/.

“Pong Game.” Accessed December 11, 2024. https://www.ponggame.org/.

Schmidhuber, Juergen. “Annotated History of Modern AI and Deep Learning,” December 21, 2022.
https://arxiv.org/abs/2212.11279v2.

Simonini, Thomas. “Self-Play: A Classic Technique to Train Competitive Agents in Adversarial Games
- Hugging Face Deep RL Course.” Accessed December 11, 2024. https://huggingface.co/learn/deep-
rl-course/en/unit7/self-play.

Sutton, Richard S.., and Andrew G.. Barto. Reinforcement Learning : An Introduction. The MIT Press,
2020.

Tattersall, Ian. “Charles Darwin and Human Evolution.” Evolution: Education and Outreach 2, no. 1
(December 6, 2008): 28–34. https://doi.org/10.1007/S12052-008-0098-8.

“The Chain Rule,” n.d. www.mathcentre.ac.uk.

Walczak, Steven, and Narciso Cerpa. “Artificial Neural Networks.” Encyclopedia of Physical Science
and Technology, 2003, 631–45. https://doi.org/10.1016/B0-12-227410-5/00837-1.

Wood, Thomas. “Sigmoid Function Definition | DeepAI.” Accessed December 11, 2024.
https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function.

YanisaHS. “Sigmoid Activation Function | Codecademy,” July 7, 2023.
https://www.codecademy.com/resources/docs/ai/neural-networks/sigmoid-activation-function.

63

10 Appendix
The raw data used for the statistical analysis in section 4 consists of very large tables that
would only use unnecessary space in this paper. Instead, I decided to include an Excel
file to properly represent the collected data. Each sheet in this Excel file is a different
section of the appendix and its relevance will be explained below. All the appendices
except for Appendix G are on tests of the performance of the Actor-Critic Method in Pong.

10.1 Appendix A
This table contains the accuracy of learning attempts over the course of their training.
The values in each row represent the accuracy over the last thousand episodes.

The learning rate of the critic in each learning attempt is in the name, the learning rate of
the policy is equal to the learning rate of the critic divided by ten.

10.2 Appendix B

This table contains the accuracy of learning attempts over the course of their training.
The three learning attempts that all started with the same weights. The values in each row
represent the accuracy over the last thousand episodes.

10.3 Appendix C

This table contains the accuracy of learning attempts over the course of their training.
Both learning attempts failed, one failed after improving for a while, the other failed right
from the start and never managed to learn anything. The values in each row represent the
accuracy over the last thousand episodes.

10.4 Appendix D
This table contains the accuracy of learning attempts over the course of their training. All
of them have exactly the same parameters and varied starting weights as normal. The
values in each row represent the accuracy over the last thousand episodes.

64

10.5 Appendix E
This table contains the accuracy of the average learning attempts for different sizes over
the course of their training. It uses the learning attempts from Appendix F and Appendix
D for those averages. The names consists of “x,y. x is the number of hidden layers and y
is the number of neuron per hidden layer. The values in each row represent the accuracy
over the last thousand episodes.

10.6 Appendix F
This table contains the accuracy of learning attempts over the course of their training for
different sized ANNs. The names consists of “x,y. x is the number of hidden layers and y
is the number of neuron per hidden layer. The values in each row represent the accuracy
over the last thousand episodes.

10.7 Appendix G

This table contains the accuracy of a learning attempt of the Actor-Critic Method in
Footsies to show an example of how the Actor-Critic Method performs in Footsies. The
values in each row represent the accuracy over the last thousand episodes.

